Standard Test for the Machinability of Cast Iron

[Slide 1] Standard Test for the Machinability of Cast Iron presented by Michael E Finn, President of Finn Metalworking and Cutting Solutions.

[Slide 2] The American Foundry Society is funding the project to develop a standardized test for evaluating the machinability of cast iron.

[Slide 3] The project is managed by a Steering Committee of the 5-J Quality Control Committee. Development of the machinability test is being conducted by the Industrial Partners, which includes Citation Innovative Metal Components, Wells Manufacturing Dura-Bar and ThyssenKrupp Waupaca, and the principle investigator, Finn Metalworking and Cutting Solutions.

[Slide 4] The Steering Committee includes representatives from Chrysler, Copeland, Finn Metalworking and Cutting Solutions, Metal Technologies, Slinger Manufacturing, Stork Climax Research Services, ThyssenKrupp Waupaca and Wells Manufacturing Dura-Bar.

[Slide 5] A complaint of poor machinability by foundry customers may be related to factors that:
1. Cannot be characterized by the foundry with current standard tests, or
2. Are not controlled by the foundry in the machining process.

[Slide 6] Investigation of a customer complaint of “bad machinability” revealed that the castings contained iron carbides from tramp elements. Iron carbides are hard and abrasive to the cutting tool.

[Slide 7] The iron casting was engineered for improved machinability by changing the process in the foundry, which included changes in the melting and charge materials.

[Slide 8] Investigation of another customer complaint of “bad machinability” revealed that the cutting tools contained different sized and shaped cemented tungsten carbides.

[Slide 9] The process in the customer’s machining house was optimized by selecting an appropriate cutting tool and specifying the grade.

[Slide 10] After receiving a customer complaint for bad machinability, the foundry metallurgical staff usually checks compliance of material properties, which affect machinability.

[Slide 11] The foundry metallurgical staff currently analyzes one or more of the following material properties for grade and customer compliance:
A standard machinability test would provide cast iron producers with an additional measurement tool to detect material and processing concerns affecting machining! The test could be used as a quality control check for compliance of mechanical and metallurgical release parameters that affect machinability. The test could also be used to measure machinability quality of each heat. Obviously, the machinability test could be used to monitor engineered changes in foundry practices for improved machinability.

In Phase 1, a method was established for machinability testing of cast iron. The International Standards Organization specification for machinability test in long turning steel bars was modified for face turning cast iron discs.

The machinability test involves face turning a workpiece with an 8-inch diameter and 1-1/2 inch thick disc cast as a test sample. The disc has a 2 inch diameter by 2 inch long hub for chucking in the turning lathe. The specified cutting fluid is Master Chemical’s Trim Sol at 5 volume percent. The specified cutting tool insert is an uncoated tungsten carbide insert (Kemnometal’s CNMG432) held in a holder providing a zero degree lead. The specified depth of cut is 0.075 inches with a feed rate of 0.008 inch per revolution. The end of test point is 0.015 inches of flank wear.

In conventional metal removal processes, cutting tool wear occurs at a steady progressive rate along the clearance and rake faces. The flank wear is measured with a tool maker’s or light optical microscope at 30 times magnification. Crater wear needs to be measured with a stereo microscope for depth of the crater. Crater wear is an important wear mechanism while machining steels with second phase particles such as found in leaded and inclusion engineered steels.

For many machining processes, 0.010 to 0.015 inches of flank wear is an end of life criteria. During machinability testing, the cutting tool is frequently removed and measured for flank wear until it reaches the wear criteria.

The flank wear in the AFS Machinability Test and ISO Test is measured as uniform wear between the nose wear and depth-of-notch wear.

Several cutting tool wear points over a range of cutting speeds may be plotted as a cutting tool life curve.
In Phase 1 of the project, the project team determined machinability values for two grades of ductile cast iron (ASTM A536 65-45-12 and 80-55-06) and two grades of gray cast iron (ASTM A159 G1800 and G3000). The $V_{30}$ values, which is the maximum cutting speed for a thirty minute cutting tool life was validated in blind testing for each of the cast iron grades.

Five wear tests at three different cutting speeds were plotted for the ASTM A536 65-45-12 ductile iron discs. A line of best fit, known as the Taylor Line, was drawn between the end-of-test wear points. The error bars for each observed point is a 95 percent confidence range. The $V_{30}$ value was calculated as 566 sfpm from the formula for the Taylor Line at a time of 30 minutes. The machinability discs cast from the same heat were then machined at 566 sfpm until the flank wear on the cutting tool insert reached 0.015 inches. The time for the end-of-life is fairly close to the Taylor Line and within the error bands.

Five wear tests at three different cutting speeds were plotted for the ASTM A536 80-55-06 ductile iron discs. The Taylor Line was drawn between the end-of-test wear points. The $V_{30}$ value was calculated as 347 sfpm from the formula for the Taylor Line at a time of 30 minutes. The machinability discs cast from the same heat were then machined at 347 sfpm until the flank wear on the cutting tool insert reached 0.015 inches. The time for the end-of-life is fairly close to the Taylor Line and within the error bands.

Five wear tests at three different cutting speeds were plotted for the ASTM A159 G1800 (Damp) gray iron discs. The Taylor Line was drawn between the end-of-test wear points. The $V_{30}$ value was calculated as 387 sfpm from the formula for the Taylor Line at a time of 30 minutes. The machinability discs cast from the same heat were then machined at 387 sfpm until the flank wear on the cutting tool insert reached 0.015 inches. The time for the end-of-life is fairly close to the Taylor Line and within the error bands.

Five wear tests at three different cutting speeds were plotted for the ASTM A159 G3000 gray iron discs. The Taylor Line was drawn between the end-of-test wear points. The $V_{30}$ value was calculated as 352 sfpm from the formula for the Taylor Line at a time of 30 minutes. The machinability discs cast from the same heat were then machined at 352 sfpm until the flank wear on the cutting tool insert reached 0.015 inches. The time for the end-of-life is fairly close to the Taylor Line and within the error bands.

The recommended procedure of removing at least 0.020 inches of metal off the face of the disc eliminates cooling effects of the microstructure, ie subsurface layers of pearlite and ferrite.

Phase 2 work is focused on developing Taylor curves and $V_{30}$ values for ASTM A48 Class 35B gray iron at three different machining laboratories and houses. The three machining facilities are determining the reproducibility and repeatability of the $V_{30}$ values on additional lots of ASTM A48 class 35B gray iron.
[Slide 27] Team members at Wells Manufacturing Dura-Bar determined that the $V_{30}$ value is 320 sfpm for machinability discs cast from the first heat of ASTM A48 Class 35B gray iron.

[Slide 28] Team members at Finn Metalworking and Cutting Solutions determined that the $V_{30}$ value is 316 sfpm for machinability discs cast from the first heat of ASTM A48 Class 35B gray iron.

[Slide 29] Validation of the $V_{30}$ value, 316 sfpm is excellent. The cutting tool insert had a 29.9 minute life when facing the discs from the first heat of gray cast iron. The validation was done three times with the same life of 29.9 minutes.

[Slide 30] Wells Manufacturing Dura-Bar is about to validate the $V_{30}$ value of 320 sfpm. Citation Innovative Manufacturing Components started developing the Taylor Line a few weeks ago.

[Slide 31 and 32] The chemical composition, tensile strength and hardness values are within grade and customer compliance.

[Slide 33] Current quarter plans include:
- Wells Manufacturing Dura-Bar will validate the $V_{30}$ value.
- Citation Innovative Manufactured Components will determine the $V_{30}$ value and validate it.
- Finn Metalworking and Cutting Solutions will validate the $V_{30}$ value on a second lot of Machinability Discs cast from another heat of ASTM A 48 Class 35B Gray Cast Iron.

[Slide 35] A few years ago the security check lines at Pearson Airport in Toronto were extremely long due to an Orange Alert, which caused flight delays for a few hours. So I took my client to the safest place to be during an Orange Alert.

[Slide 36] Thanks for listening. I would be happy to answer your questions and hear your comments. Here is my contact information:
  Michael E Finn
  Finn Metalworking and Cutting Solutions
  5103 Wedgeway Drive
  Loveland, Ohio 45140
  513-683-1713 (o/h)
  513-708-3265 (c)
  Finnmwcs@aol.com (e)
  www.metalgroup.com (w)
Standard Test for the Machinability of Cast Iron

Michael E. Finn

Finn Metalworking and Cutting Solutions
AFS Machinability Test

Project is funded by the American Foundry Society (AFS)

Purpose of the project is to develop a standardized test for evaluating the machinability of cast iron!
Managed by a Steering Committee of the 5-J Quality Control Committee

Industrial Partners are Citation Innovative Metal Components, Wells Manufacturing Dura-Bar and ThyssenKrupp Waupaca

Principle Investigator is Finn Metalworking and Cutting Solutions
Steering Committee

Representatives from:

• Chrysler, Copeland, Finn Metalworking and Cutting Solutions, Metal Technologies, Slinger Manufacturing, Stork Climax Research Services, ThyssenKrupp Waupaca and Wells Manufacturing Dura-Bar
Description of Problem

Complaints of poor machinability are often related to factors that:

1. Cannot be characterized by the foundry with current standard tests, or
2. Are not controlled by the foundry in the machining process.
Bad Machinability

Investigators found carbides from tramp elements
Engineering Improved Machinability

Change processing in foundry

• Melting conditions

• Charge Materials
Bad Machinability

Investigations revealed different cemented carbide cutting tools
Engineering Optimized Machining

Change processing in machining house

• Selected best cutting tool grade

• Specified cutting tool grade
Current Response to Complaints

After receiving a customer complaint for bad machinability. The foundry metallurgical staff usually checks compliance of material properties, which affect machinability.
Material Property Checks for Bad Machinability

- Chemical Composition
- Hardness
- Strength
- Ductility
- Toughness
- Microstructure
Description of Problem

A standard machinability test would provide cast iron producers with an additional measurement tool to detect material and processing concerns affecting machining!
AFS Machinability Test – Phase 1

Modified ISO 3685-E Spec for steel bar turning to face turn cast iron disc
AFS Machinability Test – Phase 1

Established method

• Workpiece
• Cutting Fluid
• Cutting Tool
• Cutting Parameters
• Wear measurement procedure
Cutting Tool Wear Mechanism

- Crater Wear
- Nose Wear
- Flank Wear
- Clearance Face
- Rake Face
- Depth-of-cut Notch
Cutting Tool Wear Curve

- Critical Wear
- Tool Life

Wear

Time
Uniform Flank Wear

Turning ASTM A159 G1800 Gray Iron at 415 sfpm
Cutting Tool Life Curve

Plot of several cutting tool wear curves

![Cutting Tool Life Curve Diagram](image-url)
AFS Machinability Test - Phase 1

• Determined machinability values
  – Two grades of ductile cast iron; ASTM A536 65-45-12 and 80-55-06
  – Two grades of gray cast iron; ASTM A159 G1800 and G3000

• Validated values in blind testing
$V_{30}$ Machinability Value

$$y = -192.29 \ln(x) + 1248.8$$

$V_{30} = 566$ sfpm

ASTM A536 65-45-12
Uncoated CNMG432 with 0° Lead

Two data points

Life for $V_{30}$ Value (566 sfpm)

Two data points
$V_{30}$ Machinability Value

$V_{30} = 347$ sfpm

$y = -67.228 \ln(x) + 423.23$

ASTM A536 80-55-06
Uncoated CNMG432 with 0° Lead

Life for $V_{30}$ Value (347 sfpm)
V\textsubscript{30} Machinability Value

\begin{align*}
y &= -141.65 \ln(x) + 873.88 \\
\text{Life for } V\text{\textsubscript{30}} \text{ Value (387 sfpm)}
\end{align*}

ASTM A159 G1800 (DAMP) Uncoated CNMG432 with 0° Lead
\[ y = -120.07 \ln(x) + 733.99 \]

**V_{30} Machinability Value**

ASTM A159 G3000 (LOW)
Uncoated CNMG432 with 0° Lead

Life for V_{30} Value (352 sfpm)
Subsurface Microstructure

ASTM A536 65-45-12

ASTM A536 80-55-06
Subsurface Microstructure

ASTM A159 G1800

ASTM A159 G3000
AFS Machinability Test - Phase 2

• Develop Taylor curves and $V_{30}$ values for ASTM A48 Class 35B gray iron at 3 different machine facilities

• Determine the reproducibility and repeatability of the $V_{30}$ values on additional lots of ASTM A48 class 35B gray iron at the 3 machining facilities
AFS Machinability Test - Phase 2

V_30 Value for ASTM A48 Class 35B
Determined by Dura-Bar

\[ y = -62.569 \ln(x) + 391.01 \]

\[ R^2 = 0.9667 \]

\( V_{30} \) Value: 320 sfpm
AFS Machinability Test - Phase 2

V_{30} Value for ASTM A48 Class 35B
Determined by Finn MWCS

\[ y = -76.908 \ln(x) + 472.45 \]
\[ R^2 = 0.9988 \]

V_{30} Value: 314 sfpm

Two Observed Points

Time (minutes)

Speed (sfpm)
AFS Machinability Test - Phase 2

Flank Wear (inches) vs. Time (minutes)

- First Insert
- Second Insert
- Third Insert

End-of-Life Wear

$V_{30}$ Value (314 sfpm) Validation for ASTM A48 Class 35B
Validated by Finn MWCS

29.9 minutes
V<sub>30</sub> values for ASTM A48 Class 35B gray iron

<table>
<thead>
<tr>
<th>Machine Shop</th>
<th>V&lt;sub&gt;30&lt;/sub&gt; Value, sfpm</th>
<th>Tool Life at V&lt;sub&gt;30&lt;/sub&gt; Value, minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation IMC</td>
<td>Pending</td>
<td>Pending</td>
</tr>
<tr>
<td>Finn MWCS</td>
<td>316</td>
<td>29.9</td>
</tr>
<tr>
<td>MW Dura-Bar</td>
<td>320</td>
<td>Pending</td>
</tr>
</tbody>
</table>
## ASTM A48 Class 35B Discs

<table>
<thead>
<tr>
<th>Chemical Element, wt %</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.47</td>
<td>1.98</td>
<td>0.55</td>
<td>0.05</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Mo</td>
<td>0.02</td>
<td>0.16</td>
<td>0.18</td>
<td>0.003</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ASTM A48 Class 35B Discs

• Tensile strength of two cast B-bars is 30,500 and 40,000 psi

• Hardness for the discs ranges from 217 to 201 HB.
Current Quarter Plans

• WM Dura-Bar will validate the $V_{30}$ value.
• Citation IMC will determine the $V_{30}$ value and validate it.
• Finn MWCS will validate the $V_{30}$ value on a 2$^{nd}$ lot of Machinability Discs cast from another heat of ASTM A 48 Class 35B Gray Cast Iron.
The safest place to be!
Thanks for listening!

Michael E Finn

Finn Metalworking and Cutting Solutions
5103 Wedgeway Drive
Loveland, Ohio 45140
513-683-1713 (o/h)
513-708-3265 (c)
Finnmwcs@aol.com (e)
www.metalgroup.com (w)