Zerspanbarkeit von Gußeisen mit Vermikulargraphit

1. Einleitung

Hamada stellte fest, daß bei niedrigen Magnetisierungswerten erzeugtes Gußeisen mit Vermikulargraphit (30–70 %) gleiche Bearbeitbarkeitswerte aufweist wie Gußeisen mit Kugelgraphit, wobei beide im gegensätzlichen Zustand untersucht wurden [7].

Oostwoud deutet an, daß die Zerspanbarkeit beim GGV besser als die von GGG ist. Die Form und Schnittwinkel bei der Bearbeitung von ferritischen Gußeisenarten mit Vermikulargraphit gleichen denen von Gußeisen mit Lamellengraphit der Festigkeit 210 N/mm² (GGL 20) [8].

Hinsichtlich der Spanform stellte man eine Neigung zur Spanbrechung in ähnlicher Form, wie sie bei GGL charakteristisch ist, fest [8], [9], [11], [12].

Serpent und Evans untersuchten den Werkzeugverschleiß bei der Herstellung von Bohrungen (Ø X 16 mm, 75 U/min, 72 mm/min) und heben hervor, daß die Bearbeitbarkeit von GGV praktisch derjenigen von GGG gleicht, wobei der Verschleiß am Werkzeug aber größer ist als beim Bohren von Werkstücken aus GGG [13].

Man kann also daraus schließen, daß der Einfluß der Graphitgestalt stark von der Zusammensetzung der metallischen Grundmasse abhängt, wobei beide Gefügeeigenschaften unmittelbar vom Impfungrad, der Wanddicke, den thermischen Eigenschaften der Gießform usw. beeinflußt werden.
In der Tabelle 1 ist die chemische Zusammensetzung der erzeugten Gußleisensorten angegeben. Gegen wurden Probestücke der Durchmesser 25, 40 und 60 mm sowie 100 mm Höhe in Sandformen. Die Probestücke wurden im gegossenen und wärmebehandelten Zustand (2,5 h Haltezeit bei 850°C und Abkühlung im Ofen oder an Luft) verwendet. Die Bearbeitung aller Probestücke bis auf einen Durchmesser von 15 mm erfolgte durch Drehen mit Drehmeßen, beschriftet mit Hartmetallplättchen der Sorte SNGW121305 und aktiver Geometrie (x=70°, y=6°, a=5°). Für diese wurde die Zerspanungskraft \(F_z \) festgelegt. Folgende Zerspanungsbedingungen kamen zur Anwendung:

Zerspanungsgeschwindigkeit 100 m/min;
Vorschub 0,25 mm/Up;
Zerspanungstiefe 1,0 mm.

Die Drehzahl wurde in Abhängigkeit vom Durchmesser der Probestücke verändert. Der Reziprokwert der Zerspanungskraft kennzeichnet die Bearbeitbarkeit. Unter Anwendung von Drehachsen aus Schnellarbeitsstahl (HSS) wurde die gesamte Zerspanungslänge bis zum absoluten Verschleiß des Dreilagens bestimmt. Die Bearbeitung erfolgte unter den gleichen Betriebsbedingungen wie im ersten Fall. Vor der eigentlichen Bearbeitung wurde die Oberflächenschicht in einer Tiefe von 2 bis 3 mm entfernt. Die bearbeiteten Flächen untersuchte man, wobei die Mittelrauheit \(R_a \) auf einer Länge von 5 mm festgelegt wurde. Die bearbeiteten Probestücke (Dmr. \(15 \times 20 \) mm) wurden einer Druckprüfung unterworfen.

3. Erzielte Ergebnisse

3.1. Gefügeeigenschaften
Das Gefüge des Gußleisens hängt stark von den Impfbedingungen und der Abkühlungsgeschwindigkeit bzw. der Wanddicke ab und wird sowohl durch die Graphitmerkmale (Dichtigkeitsgrad und Abmessungen) als auch durch die Zusammensetzung der metallischen Grundmasse (Ferrit- und Perlitanteil) beeinflußt. Im Bild 1 ist die Längenveränderung der Graphitbildung für die drei Gußleisensorten unter dem Einfluß der Wanddickezuwahme angegeben. Die Abnahme der Abkühlungsgeschwindigkeit beeinflußt ebenfalls die Lamellengraphitabfassung, die zwei- bis fünfmal größer ist als die von Vermikulargraphit (1,5- bis 2,5mm) bzw. von Kugelgraphit (1,5- bis 2,5mm). Hinsichtlich der metallischen Grundmasse beobachtete man eine erhöhte Empfindlichkeit des GGG zur Ferritätsumbildung. Diese Gußleisensorten haben die geringste Perllinie unter gleichartigen Bedingungen bezüglich der chemischen Zusammensetzung und der Abkühlungszustände. Das Gefüge von GGV ist stabil als bei den anderen Graphitformen sowohl hinsichtlich der Abmessungen und des Dichtigkeitsgrades des Graphits als auch bezüglich der Zusammensetzung der metallischen Grundmasse, was auch in anderen Arbeiten publiziert wurde [14] bis [18].

Die Verarbeitung der Ferrit- und Perlitanteile wurden die Versuchsstelle wärmebehandelt. Es konnten durch Normalisierung (2,5 h Haltezeit bei 850°C, Abkühlung an Luft) bei GGG 60 bis 100 % Perlit, abhängig von der Wanddicke erzielt werden (Bild 3). Durch eine Ferritveränderungsbehandlung wurde ein Gefüge mit über 90 % Ferrit für alle Graphitformen und Wanddicken gesichert.

3.2. Bearbeitbarkeitscharakteristik

Das Auftreten von Vermikulargraphit im GGG ermöglicht eine Verbesserung der Bearbeitbarkeit, je niedriger der Perlitanteil ist (Bild 5). Bei konstanter Grundmasse beeinflußt die Größe des Vermikulargraphits die Bearbeitbarkeit. Durch Wärmebehandlung wurden ferritische (100 % F) und ferritisch-perlitische (55 bis 100 % F) Gußleisensorten mit konstanter Grundmasse

Bild 1. Einfluß der Wanddicke auf die Größe der Graphitausscheidungen (links)

1. GGG (CE = 4,41 %)
2. GGV (CE = 4,39 %)
3. GGG (CE = 4,45 %)

Bild 2. Gefügeveränderung im Querschnitt eines Probestückes, Dmr. 50 mm (rechts)

--- Perlitanteil --- Graphitlänge

Bild 3. Durch Normalisierung erhaltene Perllinie bei Gußeisen mit Vermikulargraphit (links)

Wärmebehandlung: 2,5 h bei 850°C

Bild 4. Einfluß der Perllinie auf die Zerspanungskraft (Mitte)

1. 55 bis 100 % P
2. 25 bis 49 % P
3. 10 % P

Bild 5. Einfluß des im GGG-Gefüge enthaltenen Vermikulargraphitanteils auf die Zerspanungskraft (rechts)

--- Perlitanteil --- Vermikulargraphitanteil

--- Die Bearbeitung der Gußeisen fand unter der Leitung von Dipl.-Ing. M. Georghiou statt

Gütertransport - M. Jahrgang - Heft 2/1965

204
erzeugt, wobei die Wanddicke zwischen 25 und 60 mm variiert wurde.

Die Abnahme der Abkühlungsgeschwindigkeit infolge der Zunahme der Wanddicke führt zu einer Verminderung des Dichtestgrades der Vermittlergraphitabscheidungen, was eine Abnahme der Zerspanungskraft zur Folge hat (Bild 6).

Die Verbesserung der Bearbeitbarkeit durch die Zunahme der Wanddicke bei GGV-Teilen wird also nicht nur durch die Erhöhung des Ferrantanteils (dessen Anderung verhältnismäßig niedrig ist) bestimmt, sondern auch durch die Vergrößerung der Abmessung der Graphitabscheidungen und deren stärkerer Einfluß auf die Fragmentierung der Späne.

Die unterschiedliche Empfindlichkeit gegenüber der Abkühlungsgeschwindigkeit (Wanddicke) ist die Ursache für die großen Unterschiede in der Bearbeitbarkeit der verschiedenen Gußeisenarten. Es wurde nachgewiesen, daß Lamellengraphit die Anwendung einer niedrigeren Zerspanungskraft als bei Vermittlergraphit ermöglicht, falls die Grundmasse konstant bleibt.

Die Bearbeitbarkeit der Sh-Probestücke von 25 bis 60 mm Dmr. gegossenen GGL- und GGV-Teile mit (fast gleicher chemischer Zusammensetzung (CE = 4,39 bis 4,41 %) ist im Bild 7 dargestellt.

Ferritische GGV-Teile haben bessere Bearbeitbarkeit als die perlitischen und GGL-Teile. Obwohl der Lamellengraphit die Erzielung von niedrigeren Zerspanungskräften zuläßt, erreicht die Erhöhung des Ferrantanteils im GGV eine Verbesserung der Bearbeitbarkeit dieses Werkstoffs. Aus Bild 7 geht hervor, daß bei GGL erst bei einer Wanddicke von 60 mm eine niedrigere Zerspanungskraft als bei GGV-Teilen der Wanddicken von 25 bis 40 mm auftritt. Bei gleicher Wanddicke ist die Bearbeitbarkeit der GGV-Teile infolge der größeren Terrilitmen besser.

Die gutkolkolke, überwiegend ferritische Umwandlung begünstigt selbst bei höheren Abkühlungsgeschwindigkeiten, die charakteristisch für GGV-Legierungen sind, die Ausbildung einer ferritähnlichen Oberflächenschicht in den erzeugten Gußstücken (ebenso Bild 2), was von entscheidendem Einfluß auf die Bearbeitbarkeit, die sich gerade in dieser Zone des Gußstücks vollzieht.

Bild 11. Rauheitsprofi der durch Zerspanung bearbeiteten Flächen von Gußeisen mit Lamellen- (a), Vernickel- (b) und Kugelgraphit (c)

Bild 12. Einfluß des Perlitanteils auf die Druckfestigkeit (a) und auf die Bruchdehnung (b) der Probe (c)

3.3. Wechselbeziehung zwischen Bearbeitbarkeit und Druckverhalten

Die bearbeiteten Probestücke (Dmr. 15 × 20 mm) wurden Druckprüfung unterworfen. Die dabei erstellten Ergebnisse sind im Bild 12 enthalten. Auch in diesem Fall ist die Grundmasse ein bedeutender Einflußfaktor. Die erzielten Werte für GGV liegen zwischen den bei GGL und GGG errechneten. Der Einfluß der Graphitform ist aber unmittelbar von der Zusammensetzung der Grundmasse abhängig. Bei überwiegend ferritischen Gefügen sind die Unterschiede geringer ausgeprägt als bei Legierungen mit über 60% Perlitanteil. Darüber liegende Werte führen bedingt durch den Perlitanteil zu einer Änderung zwischen GGG und GGV.

In Anbetracht der Tatsache, daß sowohl die Druckfestigkeit als auch die Bearbeitbarkeit von der Zusammensetzung der Grundmasse beeinflußt werden, wurde die im Bild 13 dargestellte Wechselbeziehung zwischen den beiden Einflußgrößen entwickelt.

Für GGL und GGG ist die Wechselbeziehung zwischen der Zerspanungskraft und Druckfestigkeit ziemlich genau fixierbar, während beim GGV ein starkes Streufeld vorhanden ist, das unmittelbar von dem Dichtlichgrad des Graphits abhängt.

4. Schlußfolgerungen

Zusammenfassend kann also die Bearbeitbarkeit von GGV als in jeder Hinsicht vorteilhaft gegenüber den anderen Gußeisenarten angesehen werden, wodurch diese Gußeisenart besonders vorteilhaft zur mechanischen Bearbeitung einsetzbar ist.

Literatur

[18] Rippen, L., und L. Soffront: Gußeisen mit Lamellengraphit (Fonta in grafitt vermicular), Editoire Technikh, Bukarest 1984

Dr.-Ing. Zora Gedeonow, Technische Hochschule, Košice (CSSR)

Der Einfluß des Kohlenstoffs und Siliziums auf die Vorschwindungsausdehnung des eutektischen und übereutektischen Gußeisens mit Lamellengraphit

1. Einleitung

2. Ermittlung und Auswertung der Meßergebnisse

Man bestimmte die Beziehungen zwischen der chemischen...