New method to understand steel fracturing

Date: February 11, 2015
Source: Universidad Carlos III de Madrid - Oficina de Información Científica
Summary: Researchers have visualized step-by-step and on a microscopic level how certain steels fracture when extreme loads are applied to them. This could help to improve these materials, which are used in the automobile industry.

Researchers from the Universidad Carlos III de Madrid (UC3M) have visualized step-by-step and
on a microscopic level how certain steels fracture when extreme loads are applied to them.

Credit: Image courtesy of Universidad Carlos III de Madrid - Oficina de Información Científica

Researchers from the Universidad Carlos III de Madrid (UC3M) have visualized step-by-step and on a microscopic level how certain steels fracture when extreme loads are applied to them. This could help to improve these materials, which are used in the automobile industry.

Scientists from the UC3M Powder Technology Group (initialled GTP in Spanish) have carried out this research using a scanning electron microscope to obtain high-resolution images (around 10 nanometers; a nanometer is one millionth of a millimeter). The application of new techniques to characterize materials has made it possible to better understand the behavior of sintered steels (those produced from powders) on fracturing. In this way, they have been able to discover where the first cracks "nucleate' and where they particularly extend to," the GTP researchers explain.

The materials that are the subject of the research are commercial sintered steels obtained through powder metallurgy or powder technology and are widely used in the automobile industry. Mechanical and on-site characterization tests performed in the scanning electron microscope have been essential in "understanding the mechanisms of fracture," which, until this research, "we have never been able to determine, but instead only intuit," explains one of the authors of the study, Elena Bernardo, from the UC3M Powder Technology Group.

In this study, published in the journal *Powder Metallurgy*, several steels currently on the market were evaluated. Specifically, an Fe-C steel, a steel pre-alloyed with molybdenum (Astaloy Mo grade, Höganäs AB) and the well-known Distaloy AE (Höganäs AB), which is iron alloyed by diffusion with copper, nickel and molybdenum, were analyzed. The results have helped in understanding the connection between microstructure and properties, which in these materials entails a technological challenge, as not only the phases but also the residual porosity that composes their microstructure come into play. José Manuel Torralba, full professor in the UC3M department of Materials Science and Engineering and Deputy Director of the IMDEA Materials Institute, stresses the fundamental role of porosity in these steels: "The research has revealed, among other things, that the most angular and irregular pores are the first points of `nucleation,' that is, those that initiate the breaking."

This study has made it possible to fulfill the "dream" of any scientist devoted to Materials Science and Engineering, as it makes changes in the microstructure of the material visible while it is being tested, says Torralba. Moreover, the methodology used "is applicable to any type of alloy" and not only to test its behavior under pressure, but "also its behavior at high temperatures." Some of the research was carried out at the UC3M facilities and was completed at IMDEA Materials, a research institute financed by the regional government of Madrid and the European Union.

Story Source:

The above post is reprinted from materials provided by Universidad Carlos III de Madrid - Oficina de Información Científica. *Note: Materials may be edited for content and length.*

Journal Reference:

http://www.sciencedaily.com/releases/2015/02/1502111033205.htm
New High-Strength Steel Could Help Automakers Improve Fuel Efficiency

June 23, 2015 — A high-strength steel could help auto manufacturers in their quest to meet future fuel efficiency ... read more »

Improving Productivity of Welding by Reducing Groove Angle

Mar. 18, 2015 — Scientists have been developing materials and technology suitable for Arctic conditions, Principles for safe and ecological design and manufacturing of structures and devices used for energy ... read more »

High-Strength Material Advancements May Lead to New, Life-Saving Steel

Nov. 5, 2012 — Engineers have been working to create advanced materials with high-yield strength, fracture toughness and ductility. Their efforts have led to the development of a new material consisting of bainitic ... read more »

New Way to Study Ground Fractures

Feb. 2, 2012 — Geophysics researchers have created a new way to study fractures by producing elastic waves, or vibrations, through using high-intensity light focused directly on the fracture ... read more »

Strange & Offbeat

SPACE & TIME

Protons and Antiprotons Appear to Be True Mirror Images

Charting the Slow Death of the Universe

Astronomers Discover New Planet Orbiting Two Stars

Galaxy Star Birth Regulated by Black-Hole Fountain

MATTER & ENERGY

The Pressure Is On: New Technology to Squeeze Materials With a Million Times the Pressure of Earth’s Atmosphere

Computer Scientists Find Mass Extinctions Can Accelerate Evolution

Flexible, Biodegradable Device Can Generate Power from Touch